[研学] 质因数分解及素性判定

[研学] 质因数分解及素性判定

时间:2018.10 ~ 2019.3

参加成员:Modem_  Lagoon   _Qijia   mnihyc

感觉这个是人生巅峰了, Lagoon 上清华,剩下我们三也退役了,摆在这留作纪念ww  拿濑户口的话来说,就是萌新那会才是最辉煌的时期www

  • 【序言】

质数的研究一直是数学与信息学领域中的重要课题,质数的判定与质因数分解在现代通讯保密领域中更是发挥着重要的作用,本课题小组将通过此次研学机会对不同规模下自然数素性判定及质因数分解的有效算法进行探究,加深对该领域的了解和理解。

 

  • 【1.0】素数的定义

素数,又称质数。一个数 \(n\) 是素数当且仅当它是大于 \(1\) 的自然数且它的因数有且仅有 \(1\) 与 \(n\) 。

 

  • 【1.1】记号与规定

    1. 记 \(\displaystyle\mathbb{R}\) 表示实数集,\(\displaystyle\mathbb{N}\) 表示自然数集,\(P\) 表示素数集。
    2. 勒让德符号 \(\displaystyle\left( {\frac{n}{p}} \right)\)。设 \(\displaystyle p \in P,n \in \mathbb{N}\)。

 

  • 【1.2】素数的一些性质

    • \(P\) 是无限集。
    • 对于任意大于 \(1\) 的自然数,它要么是个素数,要么可以分解为若干素数之积,并且在忽略顺序的情况下,这样的分解是唯一的。
    • 小于 \(n\) 的质数大约有 \(\ln n\) 个。
    • 一个合数 \(n\) 最小的素因数因数一定小于 \(\sqrt n \)。
    • 费马小定理:设 \(p\) 是大于 \(2\) 的素数,则对于任意正整数 \(n\) 均有 \(\displaystyle \begin{array}{*{20}{c}}{{n^{p – 1}} \equiv 1}&{(\bmod p)}\end{array}\)。
    • Mertens’ second theorem

 

  • 【2.0】素性判定

因为素数集为无限集,并且素数的分布没有规律,所以我们需要实现一个算法来判定一个数是否为素数。而素性判定算法正是这样一类算法:输入一个整数,返回这个数是“素数”还是“合数”。…

YZOJ P4643 [BJOI2018] 链上二次求和

[BJOI2018] 链上二次求和

时间限制:4000MS     内存限制:131072KB

难度:\(6.2\)

  • 题目描述

YJC 有一棵 \(n\) 个节点的树, \(i\)、\(i+1\) (\(1 \leq i < n\))节点间有一条边,第 \(i\) 个点的权值为整数 \(a_i\) 。

现在他有 \(m\) 个询问:

操作 \(1\)(修改):给定树上两个节点 \(u\)、\(v\) 和一个整数 \(d\),表示将树上 \(u\) 到 \(v\) 唯一的简单路径上每个点权值都加上 \(d\)。

操作 \(2\)(询问):给定两个正整数 \(l\)、\(r\) ,表示求树上所有节点个数大于等于 \(l\) 且小于等于 \(r\) 的简单路径节点权值和之和。由于答案很大,只用输出对质数 \(1000000007\) 取模的结果即可。

一条节点个数为 \(k\) 的简单路径节点权值和为这条上所有 \(k\) 个节点(包括端点)的权值之和,而本题中要求是对所有满足要求的简单路径,求这一权值和的和。

树边是无向的,所以路径也是无向的,即点 \(1\) 到点 \(2\) 的路径与点 \(2\) 到点 \(1\) 的路径是同一条,不要重复计算。

  • 输入格式

输入第一行包含两个正整数 \(n\)、\(m\),分别表示节点个数和操作次数。

第二行包含 \(n\) 个整数,其中第 \(i\) 个数 \(a_i\) 为第 \(i\) 个点的初始权值。

接下来 \(m\) 行,每行为 1 u v d  或 2 l r  的形式,分别表示进行一次操作 \(1\)(修改)或操作 \(2\)(询问)。

  • 输出格式

对于每次询问,输出一行一个整数,表示答案对 \(1000000007\) 取模的余数。…

YZOJ P4611 区间加多项式(YJC 的数组/多项式?)

YZOJ P4611 区间加多项式(YJC 的数组/多项式?)

时间限制:4444MS      内存限制:1048576KB

难度:\(7.2\)

  • 题目描述

由于本题之前被*了,所以现在数据就是随便造的,可能会因为太水又被艹     //给出题人留点面子吧qwq

YJC 在 AK 了一场校内之后,对其中的一题(P2036 「A Simple Data Structure Problem II 」)产生了兴趣。

于是他出了一题加强版(P4316 「ASDSP VII —— YJC树」),然而,他还是觉得这个加强版太简单啦!!!

所以,这次,他不仅把 \(K \leq 5\) 往后面加了三个零变成了 \(K \leq 5000\) ,还对询问做了一点修改!

喜欢差分的 YJC 有一个长度为 \(N\) 的数组 \(c\),初始值都为 \(0\),下标编号为 \(1, 2, \cdots, N\) 。

现在 YJC 忙着 AK CSP-S2019,没空验证数据的正确性,所以只能把这个重任交给了你 —— ******,希望你能写一个程序帮他实现以下的几个操作:

\(opt=1\),给定 \(L, R\),输出 \(\sum\limits_{i=L}^R c_i\) 的值对 \(998244353\) 取模后的结果;

\(opt=0\),给定 \(L, R\) 以及 \(K\) 次多项式 \(f(x)=\sum\limits_{k=0}^K a_kx^k\),对 \(c_L, c_{L+1}, \cdots, c_R\) 分别加上 \(f(1), f(2), \cdots, f(R-L+1)\) 的值。

  • 输入格式

第一行两个正整数 \(N, Q\) ,分别表示区间范围 \([1, N]\) 及询问数 \(Q\) 。

接下来,每行(除了每个 \(opt=0\) 操作的下一行)的第一个数 \(opt\) 表示操作类型。

若 \(opt=0\),则接下来有两个正整数 \(L, R\) 表示操作的区间 \([L, R]\)。紧接着下一行的第一个整数 \(K\) 表示多项式的最高次数为 \(K\) ,接下来 \(K+1\) 个整数 \(a_0, a_1, \cdots, a_K\) 分别表示多项式 \(f(x)= \displaystyle\sum\limits_{k=0}^K a_kx^k\) 的系数;

若 \(opt=1\),则接下来有两个正整数 \(L, R\) 表示询问的区间 \([L, R]\)。

因为 YJC 忙着 AK CSP-S2019(之前说过了),所以他一不小心把数据给加密了。

记 …

YZOJ P3527 [FJOI2018D1T3]城市路径问题

YZOJ P3527 [FJOI2018D1T3]城市路径问题

时间限制:1000MS      内存限制:131072KB

难度:\(6.5\)

  • 题目描述

给出一张 \(n\) 个点的有向图 \(G(V, E)\) 。对于任意两个点 \(u, v\) (\(u\) 可以等于 \(v\) ),\(u\) 向 \(v\) 的连边数为:\(\sum\limits_{i=1}^k {out[u, i] \times in[v, i]}\) 。

给定 \(k\) 和数组 \(out, in\) ,现在有 \(m\) 个询问,每次询问给出三个参数 \(u, v, d\),你需要回答从节点 \(u\) 出发,经过不超过 \(d\) 条边到达节点 \(v\) 的路径有多少种。

答案对 \(10^9+7\) 取模。

  • 输入格式

第一行两个整数 \(n, k\) 。

接下来 \(n\) 行,第 \(i\) 行有 \(2k\) 个整数,前 \(k\) 个整数描述 \(out[i][]\),后 \(k\) 个数描述 \(in[i][]\) 。

接下来一行一个整数 \(m\) 。

接下来 \(m\) 行,每行三个整数 \(u, v, d\),描述一组询问。

  • 输出格式

对于每个询问,输出一个方案数。由于答案可能太大,输出其除以 \(10^9+7\) 后的余数。…

YZOJ P3033 背包

YZOJ P3033 背包

时间限制:1000MS      内存限制:131072KB

出题人:chj2001             难度:\(5.4\)

  • 题目描述

存在 \(n\) 种物品,其中第 \(i\) 种物品的价值为 \(a_i\) ,最多可以用 \(b_i\) 件,求从这些物品中选取若干件(不能为 \(0\) 件),得到的总价值为 \(9\) 的倍数的方案。

需要分别计算每种物品中,每件之间有区别的方案数和没有区别的方案数。

(即每种物品按照 \(1,2,3, \cdots ,b_i\) 编号的方案数和不编号的方案数。)

  • 输入格式

第一行输入一个数 \(n\) 。

接下来 \(n\) 行,每行两个数 \(a_i, b_i\) 。

  • 输出格式

输出共两行,每行各包括一个数,分别表示对于每种物品视为不同的时的方案数和视为相同的时的方案数。有的时候方案数可能很大,你需要将它对 \(10^9+7\) 取模。

方案数均不考虑顺序,如 \(2, 3, 4\) 和 \(4, 3, 2\) 是同一种方案。

如果无法做到则输出 \(0\) 。

  • 样例输入

  • 样例输出

  • 样例说明

不考虑同种物品之间的区别,一共有 \(2\) 种不同的方案凑出 \(9\) 的倍数,即 \(3, 2, 2, 2\) 和 \(3, 3, 3\) 。

考虑同种和果子的区别时,一共有 \(C_3^1 \times C_3^3 = 3\) 种不同的方案凑出 \(3, 2, 2, 2\),\(C_3^3=1\) 种方案凑出 \(3, 3, 3\),因此总共有 \(4\) 种方案。

  • 数据规模与约定

对于 \(40\%\) 的数据,\(n \le 1000 , a_i \le 100 , b_i \le 100\) 。

对于 \(100\%\) 的数据,\(1 \le n \le 10^5 , 1 \le a_i \le 90000 , 1 \le b_i \le …

YZOJ P3782 [校内训练20180619]组合数问题

YZOJ P3782 [校内训练20180619]组合数问题

时间限制:1000MS 内存限制:524288KB

难度:\(6.5\) 出题人:zzx

  • 题目描述

  • 输入格式

第一行一个正整数 \(n\) 表示数对个数。

接下来 \(n\) 行,第 \(i\) 行两个正整数 \(a_i, b_i\),表示一个数对 \((a_i, b_i)\) 。

  • 输出格式

一行一个整数,表示所求式子的值。

  • 样例输入

  • 样例输出

  • 样例说明

  • 数据规模与约定

保证 \(2 \leq n \leq 200,000\) , \(1 \leq b_i \leq a_i \leq 2000\) 。

 

 

 …